Continuous subgroups of the Poincare group $P(1,4)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 182893
(http://iopscience.iop.org/0305-4470/18/15/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:09

Please note that terms and conditions apply.

Continuous subgroups of the Poincaré group $\mathbf{P}(\mathbf{1 , 4})$

W I Fushchich, A F Barannik, L F Barannik and V M Fedorchuk
Mathematical Institute, Academy of Sciences of Ukrainian SSR, Repin Street 3, Kiev, USSR

Received 9 October 1984, in final form 27 March 1985

Abstract

An exhaustive description of the non-splitting subalgebras of the $\operatorname{LP}(1,4)$ algebra with respect to $\mathrm{P}(1,4)$ conjugation is presented.

1. Introduction

The generalised Poincaré group $\mathrm{P}(1,4)$ is the group of inhomogeneous pseudoorthogonal transformations of the five-dimensional pseudo-Euclidean space with the scalar product $(X, Y)=x_{0} y_{0}-x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}-x_{4} y_{4}$. The $P(1,4)$ group is the simplest one which contains the Poincaré group $\mathrm{P}(1,3)$ as a subgroup. Fushchich and Krivsky (1968,1969) and Fuschchich (1970) have used the $P(1,4)$ group and its unitary representations to describe particles with variable mass and spin. An arbitrary partial differential equation which is invariant under the $P(1,4)$ group is also invariant under the $P(1,3)$ group as well as under the extended Galilei group $\tilde{G}(1,3)$ since $\tilde{G}(1,3) \subset$ P(1,4) (Fushchich and Nikitin 1980). The papers of Aghassi et al (1970a, b) deal with irreducible representations of $P(1,4)$ and $G(1,4)$, using the latter in the theory of elementary particles. Kadyshevsky (1980) proposed using the $P(1,4)$ group in field theory with the fundamental length. The $\mathrm{P}(1,4)$ group is the invariance group of the relativistic Hamilton-Jacobi equation (Fuschchich and Serov 1983a) and the MongeAmpere equation (Fushchich and Serov 1983b). These nonlinear equations are invariant under transformations of the $\mathrm{P}(1,4)$ group with the fifth coordinate as $x_{4} \equiv u$, where $u=u\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. So it is important to investigate the subgroup structure of the $\mathrm{P}(1,4)$ group. In particular, these results can be used in the separation of variables of many important partial differential equations.

The splitting subalgebras of $\operatorname{LP}(1,4)$ were described by Fedorchuk $(1978,1979)$. Some high-dimension non-splitting subalgebras of LP $(1,4)$ were listed by Fedorchuk and Fuschchich (1980) and Fedorchuk (1981). In this paper we list all the non-splitting subalgebras of the $\operatorname{LP}(1,4)$ algebra with respect to $P(1,4)$ conjugation. In the papers of Lassner (1970), Bacry et al (1972, 1974a, b) and Patera et al (1975) all the subalgebras of $\operatorname{LP}(1,3)$ are classified with respect to $\mathrm{P}(1,3)$ conjugation, so we consider such subalgebras of $\operatorname{LP}(1,4)$ which are non-conjugate to the subalgebras of $\operatorname{LP}(1,3)$. In our paper we use the method due to Patera et al (1975).

2. Some auxiliary remarks

The $\operatorname{LP}(1,4)$ algebra is defined by the following computation relations:

$$
\left[J_{\alpha \beta}, J_{\gamma \bar{\delta}}\right]=g_{\alpha \delta} J_{\beta \gamma}+g_{\beta \gamma} J_{\alpha \delta}-g_{\alpha \gamma} J_{\beta \delta}-g_{\beta \delta} J_{\alpha \gamma}
$$

$$
\left[P_{\alpha}, J_{\beta \gamma}\right]=g_{\alpha \beta} P_{\gamma}-g_{\alpha \gamma} P_{\beta} \quad J_{\beta \alpha}=-J_{\alpha \beta} \quad\left[P_{\alpha} P_{\beta}\right]=0
$$

where $g_{00}=-g_{11}=-g_{22}=-g_{33}=-g_{44}=1, g_{\alpha \beta}=0$ if $\alpha \neq \beta(\alpha, \beta=0,1,2,3,4)$.
Below we shall use the following notation: $K_{a}=J_{0 a}-J_{a 4}(a=1,2,3) ; W=$ $\left\langle X_{1}, \ldots, X_{s}\right.$) is a space or Lie algebra over the real number field R with the generating elements $X_{1}, \ldots, X_{s} ; V=\left\langle P_{0}, P_{1}, P_{2}, P_{3}, P_{4}\right\rangle ; \pi$ is a projection $\operatorname{LP}(1,4)$ on $\operatorname{LO}(1,4)$; $\pi_{a, \ldots, q}$ is a projection $\operatorname{LP}(1,4)$ on $\left\langle P_{a}, \ldots, P_{q}\right\rangle$.

Lemma 1. Let W be a subspace of V invariant under $\operatorname{Ad} J_{a b}(1 \leqslant a<b \leqslant 4)$. If $\pi_{a, b}(W) \neq 0$ then $P_{a}, P_{b} \in W$.

Proof. Let $X=\Sigma x_{\alpha} P_{\alpha} \in W$ and $\pi_{a, b}(X) \neq 0$. Obviously,

$$
\left[J_{a b}, X\right]=x_{a} P_{b}-x_{b} P_{a} \quad\left[J_{a b},\left[J_{a b}, X\right]\right]=-x_{a} P_{a}-x_{b} P_{b}
$$

Since the vectors obtained are linearly independent, so $P_{a}, P_{b} \in W$ and this proves the lemma.

Lemma 2. If $W \subset V$ and $\left[J_{0 a}, W\right] \subset W$ and if $\pi_{0, a}(W) \neq 0$, then the subspace W contains $P_{0}+P_{a}$ or $P_{0}-P_{a}$.

Corollary. Let $W \subset V$ and $\left[J_{0 a}, W\right] \subset W$. If $\pi_{0, a}(W) \neq 0$ then within the conjugation corresponding to the element

$$
\operatorname{diag}(\underbrace{1, \ldots,-1}_{a+1}, \ldots, 1)
$$

from $\mathrm{O}(1,4)$ group W contains $P_{0}+P_{a}$.
Lemma 3. Let W be a subspace of V invariant under $\operatorname{Ad}\left(J_{0 a}+\gamma J_{c d}\right)$ where $\gamma \in R, \gamma \neq 0$, $0, a, c, d$ are mutually different. Then $W=\pi_{0, a}(W) \oplus \pi_{c, d}(W) \oplus s\left\langle P_{b}\right\rangle$, where $s \in\{0,1\}$, $b \notin\{0, a, c, d\}$.

Proof. If

$$
X=\sum_{0}^{4} \alpha_{j} P_{j} \in W
$$

then W contains the elements

$$
\begin{aligned}
& X_{1}=\left[J_{0 a}+\gamma J_{c d}, X\right]=-\alpha_{0} P_{a}-\alpha_{a} P_{0}+\gamma\left(\alpha_{c} P_{d}-\alpha_{d} P_{c}\right) \\
& X_{2}=\left[J_{0 a}+\gamma J_{c d}, X_{1}\right]=\alpha_{0} P_{0}+\alpha_{a} P_{a}+\gamma^{2}\left(-\alpha_{c} P_{c}-\alpha_{d} P_{d}\right) \\
& X_{3}=\left[J_{0 a}+\gamma_{c d}, X_{2}\right]=-\alpha_{0} P_{a}-\alpha_{a} P_{0}+\gamma^{3}\left(-\alpha_{c} P_{d}+\alpha_{d} P_{c}\right) .
\end{aligned}
$$

Since $X_{1}-X_{3}=\left(\gamma+\gamma^{3}\right)\left(\alpha_{c} P_{d}-\alpha_{d} P_{c}\right)$ and $\gamma \neq 0$, then $\alpha_{c} P_{d}-\alpha_{d} P_{c} \in W$ whence $\pi_{c, d}(X)$, $\pi_{0, a}(X) \in W$. Thus, this lemma is proved.

Lemma 4. Let W be a subspace of V invariant under $\operatorname{Ad} K_{a}$. If $\pi_{0.4}(W) \not \subset\left\langle P_{0}+P_{4}\right\rangle$ then $P_{0}+P_{4}, P_{a} \in W$. If $\pi_{a}(W) \neq 0$ then $P_{0}+P_{4} \in W$.

Proof. Let W contains the vector $X=\Sigma \alpha_{j} P_{j}$, then W also contains $X_{1}=\left[X, K_{a}\right]=$ $\alpha_{a}\left(P_{0}+P_{4}\right)+\left(\alpha_{0}-\alpha_{4}\right) P_{a}, X_{2}=\left[X_{1}, K_{a}\right]=\left(\alpha_{0}-\alpha_{4}\right)\left(P_{0}+P_{4}\right)$. If $\alpha_{0}-\alpha_{4} \neq 0$ then $P_{0}+P_{4}$, $P_{a} \in W$. If $\alpha_{0}-\alpha_{4}=0, \alpha_{a} \neq 0$ then $P_{0}+P_{4} \in W$. Thus this lemma is proved.

Lemma 5. Let W be a subspace of V invariant under $\operatorname{Ad}\left(K_{a}-J_{b c}\right)$, where $\{a, b, c\}=$ $\{1,2,3\}$. Then W is invariant under $\operatorname{Ad} K_{a}$ and $\operatorname{Ad} J_{b c}$.

Proof. Let $X=K_{a}-J_{b c}, Y \in W$. Since $[X,[X,[X, Y]]]=\left[J_{b c}, Y\right]$, then $\left[J_{b c}, W\right] \subset W$, $\left[K_{a}, W\right] \subset W$. Thus, the lemma is proved.

Lemma 6. Let F be a subalgebra of $\mathrm{LO}(1,4)$ with the generators J_{04} and K_{a}, where a covers a subset I of the set $\{1,2,3\}$. If A is a subalgebra of $\operatorname{LP}(1,4)$ and $\pi(\mathrm{A})=\mathrm{F}$, then within the conjugation with respect to the group of translations A contains elements $K_{a}(a \in I)$ and $J_{04}+\delta_{1} P_{1}+\delta_{2} P_{2}+\delta_{3} P_{3}$.

Proof. Let $X_{a}=K_{a}+\sum \alpha_{i} P_{i}, Y=J_{04}+\sum \delta_{i} P_{i}(i=0,1,2,3,4)$. By the automorphism $\exp \left(t_{1} P_{0}+t_{2} P_{4}\right)$ the coefficients δ_{0}, δ_{4} can be made zero. Since $\left[Y, X_{a}\right]=$ $-K_{a}+\delta_{a}\left(P_{0}+P_{4}\right)-\alpha_{0} P_{4}-\alpha_{4} P_{0}$, one can therefore consider $X_{a}=K_{a}+\gamma P_{0}$ within the automorphism $\exp \left(t P_{a}\right)$. Evidently $\left[Y, X_{a}\right]+X_{a}=\left(\delta_{a}+\gamma\right) P_{0}+\left(\delta_{a}-\gamma\right) P_{4}$. If $\gamma \neq 0$ then $P_{0}+P_{4} \in \mathrm{~A}$ by lemma 4. Therefore we have $P_{0}, P_{4} \in \mathrm{~A}$ and hence $\gamma=0$ within the conjugation. Thus, this lemma is proved.

Lemma 7. Let A be a subalgebra of $\operatorname{LP}(1,4), X=J_{12}+c J_{04}+\beta P_{3}, Y=K_{3}+\Sigma \gamma_{i} P_{i}(i=1$, $2,3,4 ; c>0$). If $X, Y \in \mathrm{~A}$, then A contains K_{3}.

Proof. It is easy to obtain
$c Y-[Y, X]=\left(\beta-c \gamma_{4}\right) P_{0}+\left(c \gamma_{1}-\gamma_{2}\right) P_{1}+\left(c \gamma_{2}+\gamma_{1}\right) P_{2}+c \gamma_{3} P_{3}+\left(c \gamma_{4}+\beta\right) P_{4}$.
According to lemma $3\left(\beta-c \gamma_{4}\right) P_{0}+\left(c \gamma_{4}+\beta\right) P_{4},\left(c \gamma_{1}-\gamma_{2}\right) P_{1}+\left(c \gamma_{2}+\gamma_{1}\right) P_{2} \in \mathrm{~A}$. If $\gamma_{4} \neq 0$ then lemma 4 yields $P_{0}, P_{4} \in A$. If $c \gamma_{1}-\gamma_{2}=0, c \gamma_{2}+\gamma_{1}=0$ then $\gamma_{1}=\gamma_{2}=0$. Thereafter using lemma 1 we can put $\gamma_{1}=\gamma_{2}=0$. Since $c \gamma_{3} P_{3} \in A$ one can admit that $\gamma_{3}=0$. Thus the lemma is proved.

Lemma 8. Let A be a subalgebra of $\operatorname{LP}(1,4), \varphi=\exp \left(-\omega K_{b}\right)(\omega \in R, \omega \neq 0)$. If $P_{0}+P_{4}$, $P_{b}+\omega^{-1} P_{4} \in \mathrm{~A}(1 \leqslant b \leqslant 3)$ then the algebra $\varphi(\mathrm{A})$ contains P_{0} and P_{4}.

Proof. According to the Campbell-Hausdorff formula we have

$$
\varphi\left(P_{0}+P_{4}\right)=P_{0}+P_{4} \quad \varphi\left(P_{b}+\omega^{-1} P_{4}\right)=\omega^{-1} P_{4}+\frac{1}{2} \omega\left(P_{0}+P_{4}\right) .
$$

This gives that $P_{0}+P_{4}, P_{4} \in \varphi(\mathrm{~A})$, therefore $P_{0}, P_{4} \in \varphi(\mathrm{~A})$. Thus this lemma is proved.

3. The non-splitting subalgebras of the $\operatorname{LP}(1,4)$ algebra

Let \tilde{F} be an subalgebra of $\operatorname{LP}(1,4)$ such that $\pi(\tilde{\mathrm{F}})=\mathrm{F}$. An expression $\tilde{\mathrm{F}}+\mathrm{W}$ means that $[F, W] \subset W$ and $\tilde{F} \cap V \subset W$. As concerns the non-splitting algebras $\tilde{F}+W_{1}, \ldots, \tilde{F}+$ W_{s} we will use the notation $\tilde{\mathrm{F}}: \mathrm{W}_{1}, \ldots, \mathrm{~W}_{s}$.

Theorem. Let $\alpha, \beta, \delta, \mu, \omega \in R, \alpha>0, \omega>0, \mu \geqslant 0$ and this takes place for all labelling variables. The non-splitting subalgebras of the $\operatorname{LP}(1,4)$ algebra are exhausted by the non-splitting subalgebras of the $\operatorname{LP}(1,3)$ algebra and the following subalgebras:
$\left\langle J_{12}+\alpha P_{0}\right\rangle:\left\langle P_{3}, P_{4}\right\rangle,\left\langle P_{1}, P_{2}, P_{3}, P_{4}\right\rangle ;$

$$
\begin{aligned}
& \left\langle J_{12}+P_{0}+P_{3}\right\rangle:\left\langle P_{4}\right\rangle,\left\langle P_{1}, P_{2}, P_{4}\right\rangle ; \\
& \left\langle J_{12}+\alpha P_{3}\right\rangle:\left\langle P_{4}\right\rangle,\left\langle P_{0}+P_{4}\right\rangle,\left\langle P_{0}, P_{4}\right\rangle,\left\langle P_{1}, P_{2}, P_{4}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle,\left\langle P_{0}, P_{1}, P_{2}, P_{4}\right\rangle ; \\
& \left\langle J_{12}+P_{0}\right\rangle:\left\langle P_{0}+P_{4}, P_{3}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}, P_{3}\right\rangle ; \\
& \left\langle J_{12}+J_{34}+\alpha P_{0}\right\rangle: 0,\left\langle P_{1}, P_{2}\right\rangle,\left\langle P_{1}, P_{2}, P_{3}, P_{4}\right\rangle ; \\
& \left\langle J_{12}+c J_{34}+\alpha P_{0}\right\rangle: 0,\left\langle P_{1}, P_{2}\right\rangle,\left\langle P_{3}, P_{4}\right\rangle,\left\langle P_{1}, P_{2}, P_{3}, P_{4}\right\rangle(0<c<1) \text {; } \\
& \left\langle J_{04}+\alpha P_{3}\right\rangle:\left\langle P_{1}, P_{2}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle,\left\langle P_{0}, P_{1}, P_{2}, P_{4}\right\rangle ; \\
& \left.\left\langle J_{12}+c J_{04}+\alpha P_{3}\right\rangle: 0,\left\langle P_{0}+P_{2}\right\rangle,\left\langle P_{0}, P_{4}\right\rangle,\left\langle P_{1}, P_{2}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{4}\right\rangle,\left\langle P_{0}, P_{1}, P_{2}, P_{4}\right\rangle(c\rangle 0\right) ; \\
& \left\langle K_{3}+P_{2}\right\rangle:\left\langle P_{1}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}+\omega P_{3}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{3}\right\rangle,\left\langle P_{0}, P_{1}, P_{3}, P_{4}\right\rangle ; \\
& \left\langle K_{3}+P_{4}\right\rangle:\left\langle P_{1}, P_{2}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}+\omega P_{3}, P_{2}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}, P_{3}\right\rangle ; \\
& \left\langle K_{3}-J_{12}+\alpha P_{4}\right\rangle: 0,\left\langle P_{0}+P_{4}\right\rangle,\left\langle P_{0}+P_{4}, P_{3}\right\rangle,\left\langle P_{1}, P_{2}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}, P_{3}\right\rangle ; \\
& \left\langle J_{12}+\alpha P_{0}, J_{34}+\mu P_{0}\right\rangle ; 0,\left\langle P_{1}, P_{2}\right\rangle,\left\langle P_{1}, P_{2}, P_{3}, P_{4}\right\rangle ;\left\langle J_{12}, J_{34}+\alpha P_{0}, P_{1}, P_{2}\right\rangle ; \\
& \left\langle J_{04}+\alpha P_{3}, J_{12}+\mu P_{3}\right\rangle: 0,\left\langle P_{0}+P_{4}\right\rangle,\left\langle P_{0}, P_{4}\right\rangle,\left\langle P_{1}, P_{2}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle,\left\langle P_{0}, P_{1}, P_{2}, P_{4}\right\rangle ; \\
& \left\langle J_{04}, J_{12}+\alpha P_{3}\right\rangle: 0,\left\langle P_{0}+P_{4}\right\rangle,\left\langle P_{0}, P_{4}\right\rangle,\left\langle P_{1}, P_{2}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle,\left\langle P_{0}, P_{1}, P_{2}, P_{4}\right\rangle ; \\
& \left\langle J_{12}+P_{0}+P_{4}, K_{3}+\mu P_{4}\right\rangle ;\left\langle J_{12}, K_{3}+P_{4}\right\rangle ; \\
& \left\langle J_{12}+\mu P_{3}, K_{3}+P_{4}, P_{0}+P_{4}\right\rangle ;\left\langle J_{12}+\alpha P_{3}, K_{3}, P_{0}+P_{4}\right\rangle ; \\
& \left\langle J_{12}+P_{0}+P_{4}, K_{3}+\mu P_{4}, P_{1}, P_{2}\right\rangle ;\left\langle J_{12}, K_{3}+P_{4}, P_{1}, P_{2}\right\rangle ; \\
& \left\langle J_{12}+\mu P_{4}, K_{3}+P_{4}, P_{0}+P_{4}, P_{3}\right\rangle ;\left\langle J_{12}+P_{4}, K_{3}, P_{0}+P_{4}, P_{3}\right\rangle ; \\
& \left\langle J_{12}+\mu P_{3}, K_{3}+P_{4}, P_{0}+P_{4}, P_{1}, P_{2}\right\rangle ;\left\langle J_{12}+\alpha P_{3}, K_{3}, P_{0}+P_{4}, P_{1}, P_{2}\right\rangle ; \\
& \left\langle J_{12}+\mu P_{4}, K_{3}+P_{4}, P_{0}+P_{4}, P_{1}, P_{2}, P_{3}\right\rangle ;\left\langle J_{12}+P_{4}, K_{3}, P_{0}+P_{4}, P_{1}, P_{2}, P_{3}\right\rangle ; \\
& \left\langle K_{1}+\mu P_{2}+P_{3}, K_{2}+\mu P_{1}+\beta P_{2}\right\rangle ;\left\langle K_{1}, K_{2} \pm P_{2}, P_{3}\right\rangle ; \\
& \left\langle K_{1}+P_{2}, K_{2}+P_{1}+\beta P_{2}, P_{3}\right\rangle ;\left\langle K_{1}+\alpha P_{2}+P_{3}, K_{2}+\beta_{1} P_{1}+\beta_{2} P_{2}, P_{0}+P_{4}\right\rangle ; \\
& \left\langle K_{1}+P_{3}, K_{2}+\mu P_{1}+\beta P_{2}, P_{0}+P_{4}\right\rangle ;\left\langle K_{1}+\mu_{2} P_{2}+\mu_{3} P_{3}, K_{2}+P_{4}, P_{0}+P_{4}, P_{1}\right\rangle ; \\
& \left\langle K_{1}+P_{2}+\alpha P_{3}, K_{2}+\beta P_{3}, P_{0}+P_{4}, P_{1}\right\rangle ;\left\langle K_{1}+P_{2}, K_{2}+\alpha P_{3}, P_{0}+P_{4}, P_{1}\right\rangle ; \\
& \left\langle K_{1}+P_{3}, K_{2}+\mu P_{3}, P_{0}+P_{4}, P_{1}\right\rangle ;\left\langle K_{1}, K_{2}+P_{3}, P_{0}+P_{4}, P_{1}\right\rangle ; \\
& \left\langle K_{1}+P_{2}, K_{2}+\beta_{1} P_{1}+\beta_{2} P_{2}, P_{0}+P_{4}, P_{3}\right\rangle ;\left\langle K_{1}, K_{2} \pm P_{2}, P_{0}+P_{4}, P_{3}\right\rangle ; \\
& \left\langle K_{1}+P_{2}+\beta P_{3}, K_{2}+\delta P_{3}, P_{0}+P_{4}, P_{1}+\omega P_{3}\right\rangle ; \\
& \left\langle K_{1}+P_{3}, K_{2}+\mu P_{3}, P_{0}+P_{4}, P_{1}+\omega P_{3}\right\rangle ;\left\langle K_{1}, K_{2}+P_{3}, P_{0}+P_{4}, P_{1}+\omega P_{3}\right\rangle ; \\
& \left\langle K_{1}+P_{3}, K_{2}, P_{0}+P_{4}, P_{1}, P_{2}\right\rangle ;\left\langle K_{1}+P_{4}, K_{2}+\alpha P_{3}, P_{0}+P_{4}, P_{1}, P_{2}\right\rangle ; \\
& \left\langle K_{1}+P_{2}, K_{2}, P_{0}+P_{4}, P_{1}, P_{3}\right\rangle ;\left\langle K_{1}+P_{2}, K_{2}+\alpha P_{4}, P_{0}+P_{4}, P_{1}, P_{3}\right\rangle ; \\
& \left\langle K_{1}, K_{2}+P_{4}, P_{0}+P_{4}, P_{1}, P_{3}\right\rangle ;\left\langle K_{1}, K_{2}+P_{3}, P_{0}+P_{4}, P_{1}+\omega P_{3}, P_{2}\right\rangle ; \\
& \left\langle K_{1}+P_{4}, K_{2}+\mu P_{3}, P_{0}+P_{4}, P_{1}+\omega P_{3}, P_{2}\right\rangle ;\left\langle K_{1}+P_{3}, K_{2}, P_{0}, P_{1}, P_{2}, P_{4}\right\rangle ; \\
& \left\langle K_{1}+P_{4}, K_{2}, P_{0}+P_{4}, P_{1}, P_{2}, P_{3}\right\rangle ;\left\langle K_{3}, J_{04}+\alpha P_{1}, P_{0}+P_{4}, P_{1}+\omega P_{3}, P_{2}\right\rangle:
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle K_{3}, J_{04}+\alpha P_{2}\right\rangle:\left\langle P_{1}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}+\omega P_{3}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{3}\right\rangle,\left\langle P_{0}, P_{1}, P_{3}, P_{4}\right\rangle ; \\
& \left\langle K_{3}, J_{04}+\alpha P_{3}, P_{0}+P_{4}, P_{1}, P_{2}\right\rangle ;\left\langle K_{3}, J_{04}+\alpha_{1} P_{1}+\alpha_{2} P_{2}, P_{0}+P_{4}, P_{1}+\omega P_{3}\right\rangle ; \\
& \left\langle K_{3}, J_{04}+\alpha_{2} P_{2}+\alpha_{3} P_{3}, P_{0}+P_{4}, P_{1}\right\rangle ; \\
& \left\langle K_{3}, J_{12}+c J_{04}+\alpha P_{3}\right\rangle:\left\langle P_{0}+P_{4}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle(c>0) ; \\
& \left\langle K_{3}, J_{04}+\mu_{1} P_{3}, J_{12}+\mu_{2} P_{3}\right\rangle:\left\langle P_{0}+P_{4}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle\left(\mu_{1}^{2}+\mu_{2}^{2}>0\right) ; \\
& \left\langle K_{1}, K_{2}, J_{12}+\alpha P_{3}\right\rangle ;\left\langle K_{1}, K_{2}, J_{12}+P_{0}+P_{4}, P_{3}\right\rangle ;\left\langle K_{1}, K_{2}, J_{12}+\alpha P_{3}, P_{0}+P_{4}\right\rangle ; \\
& \left\langle K_{1}+P_{2}, K_{2}-P_{1}, J_{12}+\alpha P_{3}, P_{0}+P_{4}\right\rangle ;\left\langle K_{1}+P_{2}, K_{2}-P_{1}, J_{12}, P_{0}+P_{4}, P_{3}\right\rangle ; \\
& \left\langle K_{1}, K_{2}, J_{12}+\alpha P_{3}, P_{0}+P_{4}, P_{1}, P_{2}\right\rangle ;\left\langle K_{1}, K_{2}, J_{12}+\alpha P_{3}, P_{0}, P_{1}, P_{2}, P_{4}\right\rangle ; \\
& \left\langle K_{1}, K_{2}, J_{12}+P_{4}, P_{0}+P_{4}, P_{1}, P_{2}, P_{3}\right\rangle ; \\
& \left\langle K_{1}, K_{2}, J_{04}+\alpha P_{1}\right\rangle:\left\langle P_{0}+P_{4}, P_{3}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}+\omega P_{3}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}+\omega P_{3}, P_{2}\right\rangle ; \\
& \left\langle K_{1}, K_{2}, J_{04}+\alpha P_{2}\right\rangle:\left\langle P_{0}+P_{4}, P_{1}+\omega P_{3}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{3}\right\rangle ; \\
& \left\langle K_{1}, K_{2}, J_{04}+\alpha P_{3}\right\rangle: 0,\left\langle P_{0}+P_{4}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle,\left\langle P_{0}, P_{1}, P_{2}, P_{4}\right\rangle ; \\
& \left\langle K_{1}, K_{2}, J_{04}+\alpha_{1} P_{1}+\alpha_{2} P_{2}, P_{0}+P_{4}, P_{1}+\omega P_{3}\right\rangle ; \\
& \left\langle K_{1}, K_{2}, J_{04}+\alpha_{1} P_{1}+\alpha_{3} P_{3}, P_{0}+P_{4}\right\rangle ;\left\langle K_{1}, K_{2}, J_{04}+\alpha_{2} P_{2}+\alpha_{3} P_{3}, P_{0}+P_{4}, P_{1}\right\rangle ; \\
& \left\langle K_{1}, K_{2}, J_{12}+c J_{04}+\alpha P_{3}\right\rangle: 0,\left\langle P_{0}+P_{4}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle,\left\langle P_{0}, P_{1}, P_{2}, P_{4}\right\rangle(c>0) ; \\
& \left\langle K_{1}+P_{2}, K_{2}+P_{1}+\beta P_{2}+\mu P_{3}, K_{3}+\mu P_{2}+\delta P_{3}\right\rangle ;\left\langle K_{1}, K_{2} \pm P_{2}, K_{3}+\beta P_{3}\right\rangle ; \\
& \left\langle K_{1}+P_{2}, K_{2}+\beta_{1} P_{1}+\beta_{2} P_{2}+\alpha P_{3}, K_{3}+\delta_{1} P_{1}+\delta_{2} P_{2}+\delta_{3} P_{3}, P_{0}+P_{4}\right\rangle ; \\
& \left\langle K_{1}+P_{2}, K_{2}+\beta_{1} P_{1}+\beta_{2} P_{2}, K_{3}+\alpha P_{1}+\delta_{2} P_{2}+\delta_{3} P_{3}, P_{0}+P_{4}\right\rangle ; \\
& \left\langle K_{1}+P_{2}, K_{2}+\beta_{1} P_{1}+\beta_{2} P_{2}, K_{3}+\mu P_{2}+\delta P_{3}, P_{0}+P_{4}\right\rangle ; \\
& \left\langle K_{1}, K_{2} \pm P_{2}, K_{3}+\beta P_{3}, P_{0}+P_{4}\right\rangle ;\left\langle K_{1}+P_{2}, K_{2}+\alpha P_{3}, K_{3}+\beta P_{2}+\delta P_{3}, P_{0}+P_{4}, P_{1}\right\rangle ; \\
& \left\langle K_{1}+P_{2}, K_{2}, K_{3}+\mu P_{2}+\beta P_{3}, P_{0}+P_{4}, P_{1}\right\rangle ; \\
& \left\langle K_{1}, K_{2}+P_{3}, K_{3}+\beta P_{2}+\delta P_{3}, P_{0}+P_{4}, P_{1}\right\rangle ;\left\langle K_{1}, K_{2}, K_{3} \pm P_{3}, P_{0}+P_{4}, P_{1}\right\rangle ; \\
& \left\langle K_{1}+P_{3}, K_{2}, K_{3}, P_{0}+P_{4}, P_{1}, P_{2}\right\rangle:\left\langle K_{1}, K_{2}, K_{3}+P_{4}, P_{0}+P_{4}, P_{1}, P_{2}\right\rangle ; \\
& \left\langle K_{1}+\alpha P_{3}, K_{2}, K_{3}+P_{4}, P_{0}+P_{4}, P_{1}, P_{2}\right\rangle ;\left\langle K_{1}+P_{4}, K_{2}, K_{3}, P_{0}+P_{4}, P_{1}, P_{2}, P_{3}\right\rangle ; \\
& \left\langle K_{1} \pm \alpha P_{1}, K_{2} \pm \alpha P_{2}, J_{12}-K_{3}\right\rangle ; \\
& \left\langle K_{1}+\beta P_{1}+\mu P_{2}, K_{2}-\mu P_{1}+\beta P_{2}, J_{12}-K_{3}, P_{0}+P_{4}\right\rangle\left(\beta^{2}+\mu^{2}>0\right) ; \\
& \left\langle K_{1}+\alpha P_{2}, K_{2}-\alpha P_{1}, J_{12}-K_{3}, P_{0}+P_{4}, P_{3}\right\rangle ; \\
& \left\langle K_{1}, K_{2}, J_{12}-K_{3}+\alpha P_{4}, P_{0}+P_{4}, P_{1}, P_{2}, s P_{3}\right\rangle(s=0,1) ; \\
& \left\langle J_{12}+J_{34}, J_{12}-J_{24}, J_{23}+J_{14}, J_{34}+\alpha P_{0}\right\rangle: 0,\left\langle P_{1}, P_{2}, P_{3}, P_{4}\right\rangle ; \\
& \left\langle K_{1}, K_{2}, J_{04}+\alpha P_{3}, J_{12}+\mu P_{3}\right\rangle: 0,\left\langle P_{0}+P_{4}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle,\left\langle P_{0}, P_{1}, P_{2}, P_{4}\right\rangle ; \\
& \left\langle K_{1}, K_{2}, J_{04}, J_{12}+\alpha P_{3}\right\rangle: 0,\left\langle P_{0}+P_{4}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle,\left\langle P_{0}, P_{1}, P_{2}, P_{4}\right\rangle ; \\
& \left\langle K_{1}, K_{2}, K_{3} \pm P_{3}, J_{12}\right\rangle ;\left\langle K_{1}, K_{2}, K_{3}+\beta P_{3}, J_{12}+P_{0}+P_{4}\right\rangle ;
\end{aligned}
$$

$\left\langle K_{1}+P_{2}, K_{2}-P_{1}, K_{3}+\beta P_{3}, J_{12}+\mu P_{3}, P_{0}+P_{4}\right\rangle ;$
$\left\langle K_{1}, K_{2}, K_{3} \pm P_{3}, J_{12}+\mu P_{3}, P_{0}+P_{4}\right\rangle ;\left\langle K_{1}, K_{2}, K_{3}, J_{12}+\alpha P_{3}, P_{0}+P_{4}\right\rangle ;$
$\left\langle K_{1}+P_{2}, K_{2}-P_{1}, K_{3}, J_{12}, P_{0}+P_{4}, P_{3}\right\rangle ;\left\langle K_{1}, K_{2}, K_{3}+P_{4}, J_{12}+\mu P_{3}, P_{0}+P_{4}, P_{1}, P_{2}\right\rangle ;$
$\left\langle K_{1}, K_{2}, K_{3}, J_{12}+\alpha P_{3}, P_{0}+P_{4}, P_{1}, P_{2}\right\rangle ;\left\langle K_{1}, K_{2}, K_{3}+P_{4}, J_{12}+\mu P_{4}, P_{0}+P_{4}, P_{1}, P_{2}, P_{3}\right\rangle ;$
$\left\langle K_{1}, K_{2}, K_{3}, J_{12}+P_{4}, P_{0}+P_{4}, P_{1}, P_{2}, P_{3}\right\rangle ;\left\langle K_{1}, K_{2}, K_{3}, J_{04}+\alpha P_{1}, P_{0}+P_{4}\right\rangle ;$
$\left\langle K_{1}, K_{2}, K_{3}, J_{04}+\alpha P_{2}, P_{0}+P_{4}, P_{1}\right\rangle ;\left\langle K_{1}, K_{2}, K_{3}, J_{04}+\alpha P_{3}, P_{0}+P_{4}, P_{1}, P_{2}\right\rangle ;$
$\left\langle K_{1}, K_{2}, K_{3}, J_{12}+c J_{01}+\alpha P_{3}\right\rangle:\left\langle P_{0}+P_{4}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle(c>0) ;$
$\left.\left\langle K_{1}, K_{2}, K_{3}, K_{04}+\mu_{1} P_{3}, J_{12}+\mu_{2} P_{3}\right\rangle:\left\langle P_{0}+P_{4}\right\rangle,\left\langle P_{0}+P_{4}, P_{1}, P_{2}\right\rangle\left(\mu_{1}^{2}+\mu_{2}^{2}\right\rangle 0\right)$.
Proof. The subalgebras of $\mathrm{LO}(1,4)$ are classified by Patera et al (1976). For every algebra Fedorchuk $(1978,1979)$ has found invariant subspaces of the space V. Using these results together with lemmas $1-8$, we will find the non-splitting subalgebras of the $\operatorname{LP}(1,4)$ algebra. Below we consider some examples in detail.

Let A be a subalgebra $\operatorname{LP}(1,4), \mathrm{W}=\mathrm{A} \cap \mathrm{V}$.
Suppose that $\pi(\mathrm{A})=\left\langle J_{12}\right\rangle$. Within the automorphism $\exp \left(t_{1} P_{1}+t_{2} P_{2}\right)$ the algebra A contains the element $X=J_{12}+\lambda P_{0}+\rho P_{3}+\sigma P_{4}(\lambda, \rho, \sigma \in R)$. Since

$$
\exp \left(t J_{04}\right)\left(\lambda P_{0} \sigma P_{4}\right)=(\lambda \cosh t-\sigma \sinh t) P_{0}+(\sigma \cosh t-\lambda \sinh t) P_{4}
$$

then if $P_{0}+P_{4} \in \mathrm{~W}$ one can write $X=J_{12}+\mathrm{e}^{t}(\lambda-\sigma) P_{0}+\rho P_{3}$. Since $\exp \left(\pi J_{13}\right)(X)=$ $-J_{12}+\mathrm{e}^{t}(\lambda-\sigma) P_{0}-\rho P_{3}$, we consider $\lambda-\sigma \geqslant 0$. If $\lambda-\sigma>0$ then putting $t=-\ln (\lambda-\sigma)$, we obtain the algebra $\mathrm{W} \pm\left\langle J_{12}+P_{0}+\rho P_{3}\right\rangle$. Applying the automorphism $\exp \left(t K_{3}\right)$, one can put $\rho=0$. If $\lambda-\sigma=0$ then $\mathrm{A}=\mathrm{W} \boxplus\left\langle J_{12}+\rho P_{3}\right\rangle, \rho \neq 0$.

Let $P_{0}+P_{4} \notin$ W. If $P_{3}, P_{4} \in \mathrm{~W}$ then $\lambda>0, \rho=\sigma=0$. If $\mathrm{W}=\left\langle P_{4}\right\rangle$ or $\mathrm{W}=\left\langle P_{1}, P_{2}, P_{4}\right\rangle$ then $\sigma=0$. Applying the automorphism $\exp \left(t J_{03}\right)$ we reduce this case to the following ones $\lambda=\rho=1$ or $\lambda=0, \rho>0$.

Suppose that $\pi(\mathrm{A})=\left\langle K_{1}, K_{2}, J_{12}+c J_{04}\right\rangle(c>0)$. one can suppose that A contains the elements

$$
X_{1}=K_{1}+\sum_{0}^{4} \lambda_{i} P_{i} \quad X_{2}=K_{2}+\sum_{0}^{4} \rho_{i} P_{i} \quad X_{3}=J_{12}+c J_{04}+\sigma P_{3} .
$$

Obviously, $\left[X_{1}, X_{2}\right]=\left(\lambda_{2}-\rho_{1}\right)\left(P_{0}+P_{4}\right)+\left(\lambda_{0}-\lambda_{4}\right) P_{2}-\left(\rho_{0}-\rho_{4}\right) P_{1}$. If $\lambda_{0}-\lambda_{4} \neq 0$ or $\rho_{0}-$ $\rho_{4} \neq 0$ then using lemma 1 , we obtain $P_{1}, P_{2} \in \mathrm{~A}$. Therefore $P_{0}+P_{4} \in \mathrm{~A}$ and one can put $\lambda_{i}=\rho_{i}=0$ for $i=0,1,2$. Later, $\left[X_{3}, X_{1}\right]=K_{2}-c K_{1}-c \lambda_{4} P_{0},\left[X_{3}, X_{2}\right]=-K_{1}-c K_{2}-$ $c \rho_{4} P_{0}$. Therefore $\lambda_{3}=\rho_{3}=0, \lambda_{4} P_{4}+c \rho_{4}\left(P_{4}-P_{0}\right),-\rho_{4} P_{4}+c \lambda_{4}\left(P_{4}-P_{0}\right) \in \mathrm{A}$. The determinant constructed by the coefficients of $P_{4}, P_{4}-P_{0}$ is equal to $c\left(\lambda_{4}^{2}+\rho_{4}^{2}\right)$. If $\lambda_{4}^{2}+\rho_{4}^{2} \neq 0$ then $P_{4}, P_{4}-P_{0} \in \mathrm{~A}$. So we have the algebra $\left\langle K_{1}, K_{2}, J_{12}+c J_{04}+\sigma P_{3}, P_{0}+\right.$ $\left.P_{4}, P_{1}, P_{2}, s P_{0}\right)(s=0,1)$.

Let $\lambda_{0}-\lambda_{4}=0, \rho_{0}-\rho_{4}=0, \lambda_{3}=\rho_{3}=0$. Obviously,

$$
\begin{aligned}
& {\left[X_{3}, X_{1}\right]=K_{2}-c K_{1}+\lambda_{1} P_{2} \lambda_{2} P_{1}-c \lambda_{0}\left(P_{0}+p_{4}\right)} \\
& {\left[X_{3}, X_{2}\right]=-K_{1}-c K_{2}+\rho_{1} P_{2}-\rho_{2} P_{1}-c \rho_{0}\left(P_{0}+P_{4}\right)} \\
& {\left[X_{3}, X_{1}\right]+c X_{1}-X_{2}=\left(c \lambda_{1}-\lambda_{2}-\rho_{1}\right) P_{1}+\left(c \lambda_{2}+\lambda_{1}-\rho_{2}\right) P_{2}-\rho_{0}\left(P_{0}+P_{4}\right)} \\
& {\left[X_{3}, X_{2}\right]+X_{1}+c X_{2}=\left(\lambda_{1}+c \rho_{1}-\rho_{2}\right) P_{1}+\left(\lambda_{2}+c \rho_{2}+\rho_{1}\right) P_{2}+\lambda_{0}\left(P_{0}+P_{4}\right)}
\end{aligned}
$$

If on the right-hand side of one of the last two equalities some coefficients of P_{1}, P_{2} are non-zero, so by lemmas 1 and $3 P_{1}, P_{2}, P_{0}+P_{4} \in \mathrm{~A}$. Let $c \lambda_{1}-\lambda_{2}-\rho_{1}=0, c \lambda_{2}+\lambda_{1}-$ $\rho_{2}=0, \lambda_{1}+c \rho_{1}-\rho_{s}=0, \lambda_{2}+c \rho_{2}+\rho_{1}=0$. The determinant formed by the coefficients of $\lambda_{1}, \lambda_{2}, \rho_{1}, \rho_{2}$ is equal $c^{2}\left(4+c^{2}\right)$. We obtain $\lambda_{1}=\lambda_{2}=0, \rho_{1}=\rho_{2}=0, \lambda_{0}\left(P_{0}+P_{4}\right), \rho_{0}\left(P_{0}+\right.$ $\left.P_{4}\right) \in \mathrm{A}$ and therefore

$$
\mathrm{A}=\mathrm{W}+\left\langle K_{1}, K_{2}, J_{12}+c J_{04}+\sigma P_{3}\right\rangle \quad \mathrm{W} \subset \mathrm{~V}
$$

Let $\pi(\mathrm{A})=\left\langle J_{12}, J_{13}, J_{23}, J_{04}\right\rangle$. Because of the simplicity of the algebra $\left\langle J_{12}, J_{13}, J_{23}\right\rangle$ one can assume that A contains the elements $J_{12}, J_{13}, J_{23}, X=J_{04}+\Sigma \gamma_{i} P_{i}(i=1,2,3)$. Applying lemma 1 to $\left[J_{12}, X\right],\left[J_{13}, X\right]$, we conclude that $\Sigma \gamma_{i} P_{i} \in \mathrm{~A}$, i.e. A is a splitting algebra.

When the algebra $\pi(\mathrm{A})$ coincides with one of the following algebras: $\left\langle K_{3}, J_{04}\right\rangle$, $\left\langle K_{1}, K_{2}, J_{04}\right\rangle,\left\langle K_{1}, K_{2}, K_{3}, J_{04}\right\rangle$, one has to apply lemma 6. If $\pi(\mathrm{A})$ contains $J_{12}+c J_{04}$, K_{a}, where $a \in I \subset\{1,2,3\}$, then we apply lemma 7. Thus, this theorem is proved.

References

Aghassi J J, Roman P and Santilli R M 1970a Phys, Rev. D 1 2753-65

- 1970b J. Math. Phys. 11 2297-301

Bacry H, Combe Ph and Sorba P 1972 Preprints. Connected subgroups of the Poincare group, I and II Marseille
__ 1974a Rep. Math. Phys. 5 145-86

- 1974b Rep. Math. Phys. 5 361-92

Fedorchuk V M 1978 Preprint. Mathematical Institute, Kiev 78-18

- 1979 Ukrainian Math. J. 31 717-22
- 1981 Ukrainian Math. J. 33 696-700

Fedorchuk V M and Fushchich W I 1980 Group-Theoretical Methods in Physics. Proc. Int. Seminar, Svenigorod, 1979 (Moscow: Nauka) pp 61-6
Fushchich W I 1970 Teor. Math. Fiz. 4 360-7
Fushchich W I and Krivsky I Yu 1968 Nucl. Phys. B 79-87
-_ 1969 Nucl. Phys. B 14 537-44
Fushchich W I and Nikitin A G 1980 J. Phys. A: Math. Gen. 13 2319-30
Fushchich W I and Serov N I 1983a J. Phys. A: Math. Gen. 16 3645-56

- 1983b Dokl. Akad. Nauk USSR 273 543-6

Kadyshevsky V G 1980 Fiz. Elem. Chastiz At. Yad. 11 5-36
Lassner W 1970 Preprint. Die Zussamenhängenden Untergruppen der Poincare Gruppe Leipzig
Patera J, Winternitz P and Zassenhaus H 1975 J. Math. Phys. 16 1597-614

- 1976 J. Math. Phys. 17 717-28

