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Continuous subgroups of the PoincarC group P(l, 4) 

W I Fushchich, A F Barannik, L F Barannik and V M Fedorchuk 
Mathematical Institute, Academy of Sciences of Ukrainian SSR, Repin Street 3, Kiev, USSR 

Received 9 October 1984, in final form 27 March 1985 

Abstract. An exhaustive description of the non-splitting subalgebras of the LP( 1 ,4)  algebra 
with respect to P ( l , 4 )  conjugation is presented. 

1. Introduction 

The generalised PoincarC group P(1,4) is the group of inhomogeneous pseudo- 
orthogonal transformations of the five-dimensional pseudo-Euclidean space with the 
scalar product ( X ,  Y) = xoyo - x l y l  - x2y2 - x3y3 - x4y4. The P( 1,4) group is the simplest 
one which contains the PoincarC group P( 1,3) as a subgroup. Fushchich and Krivsky 
(1968, 1969) and Fuschchich (1970) have used the P(1,4) group and its unitary 
representations to describe particles with variable mass and spin. An arbitrary partial 
differential equation which is invariant under the P(1,4) group is also invariant under 
the P(1,3) group as well as under the extended Galilei group 6 (1 ,3 )  since 6 (1 ,3 )  c 
P( 1,4) (Fushchich and Nikitin 1980). The papers of Aghassi et a1 (1970a, b) deal with 
irreducible representations of P(1,4) and G(1,4), using the latter in the theory of 
elementary particles. Kadyshevsky (1980) proposed using the P( 1,4) group in field 
theory with the fundamental length. The P( 1,4) group is the invariance group of the 
relativistic Hamilton-Jacobi equation (Fuschchich and Serov 1983a) and the Monge- 
Ampere equation (Fushchich and Serov 1983b). These nonlinear equations are 
invariant under transformations of the P( 1,4) group with the fifth coordinate as x4 U, 
where U = u(xo,  x l ,  x2,  x3). So it is important to investigate the subgroup structure of 
the P( 1,4) group. In particular, these results can be used in the separation of variables 
of many important partial differential equations. 

The splitting subalgebras of LP( 1,4) were described by Fedorchuk (1978, 1979). 
Some high-dimension non-splitting subalgebras of LP( 1,4) were listed by Fedorchuk 
and Fuschchich (1980) and Fedorchuk (1981). In this paper we list all the non-splitting 
subalgebras of the LP(1,4) algebra with respect to P(1,4) conjugation. In the papers 
of Lassner (1970), Bacry et a1 (l972,1974a, b)  and Patera er a1 (1975) all the subalgebras 
of LP(1,3) are classified with respect to P( l ,  3) conjugation, so we consider such 
subalgebras of LP( 1,4) which are non-conjugate to the subalgebras of LP( 1,3). In 
our paper we use the method due to Patera et a1 (1975). 

2. Some auxiliary remarks 

The LP( 1,4) algebra is defined by the following computation relations: 

[Jap, J y s l =  g a 8 J p y  + &da8 - g=dL?8 - gi3sJay 
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[Po, Jpyl = guppy - guypp Jpu = -Jup [PUP,] = 0 

where goo = -gl, = -g22 = -g33 = -g4 = 1, gap = 0 if a # p ( a ,  p = 0, 1 ,2 ,3 ,4) .  
Below we shall use the following notation: K ,  = Joa - Ja4 ( a  = 1, 2,  3 ) ;  W =  

( X I , .  . . , X , )  is a space or Lie algebra over the real number field R with the generating 
elements X , ,  . . . , X , ;  V=(Po, P,, P2, P3, P4); T is a projection LP(1,4) on L0(1 ,4) ;  
T ,  ...., is a projection LP( 1 ,4 )  on (Pa, . . . , P,). 

Lemma 1. Let W be a subspace of V invariant under AdJ,,, (1  s a  < b ~ 4 ) .  If 
Tu,&( W) # 0 then Pa, Pb E W. 

Since the vectors obtained are linearly independent, so Pa, P b  E W and this proves the 
lemma. 

Lemma 2. If W c  V and [Joa, W] c W and if r0,,( W) # 0, then the subspace W 
contains Po+ Pa or Po- Pa. 

Corollary. Let W c V and [Joa, W] c W. If T ~ , ~ (  W) # 0 then within the conjugation 
corresponding to the element 

diag(1,. . . , -1,. . . , 1) 
a + l  

from O( 1,4)  group W contains Po+ Pa. 

Lemma 3. Let W be a subspace of V invariant under Ad(Jo, + yJrd) where y E R, y # 0, 
0, a, c, d are mutually different. Then W =  T ~ , , (  W)@ r , , d (  W)@s(P,), where s E (0, l}, 
b C (0, a, c, d}. 

Proof: If 
4 

x=Ca,P,E w 
0 

then W contains the elements 

= [JOa + YJcd, XI = -.OPa - aaPO+ y(acPd - adPC) 

x2= [ J O a +  YJcd, XI1 = aOPO+aaPa+ y2(-acPc-adPd) 

X 3 = [ J 0 a + Y c d r  x , ] = - . o p a - a a P ~ + y ~ ( - ( Y c P d + C Y d P c ) .  

Since X ,  - x3  = ( y +  y3)(ctcpd - adpC) and y z 0, then (u,Pd - adpc E w whence T , ~ ( x ) ,  
T ~ , ~ ( X )  E W. Thus, this lemma is proved. 

Lemma 4. Let W be a subspace of V invariant under AdK,. If r0,+( W )  
t h e n P o + P 4 ,  P,E W. I f . r r , (W)#OthenPo+P4E W. 

(Po+ P4) 

Roo$ Let W contains the vector X =I; cyj<, then W also contains XI = [ X ,  K,] = 
a,( Po+ P4) + ( a o -  a4)P,, X 2  = [ X , ,  K,] = ( (~o-a4)(Po+ P4). If a. - a4 # 0 then Po+ P4, 
Pa E W. If a. - a4 = 0, a,  # 0 then Po+ P4 E W. Thus this lemma is proved. 
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Lemma 5. Let W be a subspace of V invariant under Ad(K, - J b c ) ,  where { a ,  b, c }  = 
{I,  2,3}. Then W is invariant under Ad K ,  and Ad Jhc. 

Proof: Let X = K ,  - Jbo Y E  W. Since [ X ,  [ X ,  [ X ,  Y ] ] ]  = [ J b o  Y ] ,  then [ J b o  W l c  W ,  
[ K,, W ]  c W. Thus, the lemma is proved. 

Lemma 6. Let F be a subalgebra of L0(1,4)  with the generators 504 and K,, where a 
covers a subset I of the set {1,2,3}. If A is a subalgebra of LP( 1,4)  and v(A) = F, 
then within the conjugation with respect to the group of translations A contains elements 
K ,  ( a  E I )  and 504 + SIPl  + 6,P2 + &P3. 

Prooj Let X ,  = K ,  + X  CY& Y =Jo4+X &P, ( i  =0,  1, 2, 3, 4). By the automorphism 
exp(tlPo+ t2P4) the coefficients so, S4 can be made zero. Since [ Y, X,]= 
- K ,  + 6,( Po+ P,) - aoP, - CY~PO, one can therefore consider X ,  = K ,  + yPo within the 
automorphism exp( tP,). Evidently [ Y, X,]  + X ,  = ( 6 ,  + y)Po+ ( 6 ,  - y)P4.  If y # 0 then 
Po+ A by lemma 4. Therefore we have Po, P4 E A and hence y = 0 within the 
conjugation. Thus, this lemma is proved. 

Lemma7. LetAbeasubalgebraofLP(1,4),X=J12+cJo4+PP3, Y =K,+Z y,P, ( i = l ,  
2, 3, 4;  c > 0). If X ,  Y E  A, then A contains K,. 

Proof: It is easy to obtain 

c y  - [ Y, X I  = ( P  - CY4)Po + ( C Y ,  - 7 2 )  PI + ( C Y ,  + Y, )P2  + CY,P, + (CY,+ P )P4. 

According to lemma 3 ( P  - cy,) Po + (cy ,  + p ) P4, ( c y ,  - y 2 )  PI + ( cy2 + y l ) P 2  E A. If y4 # 0 
then lemma 4 yields Po, P4 E A. If cy, - y2  = 0 ,  cy2+ y ,  = 0 then y ,  = y2 = 0. Thereafter 
using lemma 1 we can put y ,  = y2 = 0. Since cy3P3 E A one can admit that y,  = 0. Thus 
the lemma is proved. 

Lemma 8. Let A be a subalgebra of LP(1,4), cp = exp(-wKb)(w E R, w # 0). If Po+ P4, 
P b  + w-'P4 E A (1 S b S 3) then the algebra cp (A) contains Po and P4. 

Proof: According to the Campbell-Hausdorff formula we have 

cp(p0+P4)= cp ( P b  + P4) = w - ' P 4  + (PO + P4). 
This gives that Po+ P,, P4e cp(A), therefore Po, P,E cp(A). Thus this lemma is proved. 

3. The non-splitting subalgebras of the LP(l,4) algebra 

Let 6 be an subalgebra of LP( 1,4)  such that T (  6) = F. An expression 6+ W means 
that [F, W] c W and e n V c  W. As concerns the non-splitting algebras F+ W,, . . . , 6+ 
W, we will use the notation 6: W,, . . . , W,. 

Theorem. Let CY,  P, 6, p, w E R, a > 0, w > 0, p 2 0 and this takes place for all labelling 
variables. The non-splitting subalgebras of the LP( 1,4) algebra are exhausted by the 
non-splitting subalgebras of the LP( 1,3)  algebra and the following subalgebras: 

(Jn+aPo):  (P3, P4), (PI, P2, 5, Pa); 
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Pro05 The subalgebras of LO( 1,4) are classified by Patera er al (1976). For every 
algebra Fedorchuk (1978, 1979) has found invariant subspaces of the space V. Using 
these results together with lemmas 1-8, we will find the non-splitting subalgebras of 
the LP( 1,4)  algebra. Below we consider some examples in detail. 

Let A be a subalgebra LP( 1,4), W = A n  V. 
Suppose that T(A) = ( J l z ) .  Within the automorphism exp( t i  Pi + tzPJ the algebra 

A contains the element X = Ji2 + APo+ pP3 + aP4(A, p, (T E R ) .  Since 

exp(rJo4)(APoaP4) = ( A  cosh t - a  sinh f ) P O + ( a  cosh t - A  sinh t )P4 

then if P,+P,E W one can write X =  Jlz+e ' (A -u)P0+pP3. Since exp(nJ , , ) (X)= 
-Jlz + e'( A - a )  Po - pP,, we consider A - a 2 0. If A - a > 0 then putting t = -In( A - a) ,  
we obtain the algebra W D ( J 1 2 +  Po+ pP3). Applying the automorphism exp( f K 3 ) ,  one 
can put p = 0. I f  A - a  = 0 then A = W 3 ( J i 2  + pP3), p # 0. 

Let Po + P4 W. If P3, P4 E W then A > 0, p = a = 0. If W = ( P4) or W = ( P I ,  P,, P4) 
then a = 0. Applying the automorphism exp( tJO3) we reduce this case to the following 
ones A = p  = 1 or A =0 ,  p > O .  

Suppose that T(A) = (Kl ,  K2,  J l z +  cJO~)(C > 0 ) .  one can suppose that A contains 
the elements 

A A 

X , = K ~ + C A ~ P ,  X ,  = K 2 + 2  pipi X3 = J12+ cJo4+ aP3. 
0 0 

Obviously, [ X i ,  X,] = (A , -p l ) (Po+ P4)+(Ao-A4)P2- (p0-p4)P1. If A 0 - A 4 f  0 or po- 
p4 # 0 then using lemma l ,  we obtain P I ,  P, E A. Therefore Po+ P4 E A and one can 
put A ,  = pt = 0 for i = 0, 1,2.  Later, [ X 3 ,  X i ]  = K 2  - c K ,  - cA4Po, [X, ,  X,]  = - K 1  - cK, - 
cp4Po. Therefore A 3  = p 3  = 0,  A4P4+ cp4( P4 - Po), -p4P4+ CA,( P4- Po) E A. The deter- 
minant constructed by the coefficients of P4, P4- Po is equal to c(A:+ p:).  If h:+p:  # 0 
then P4, P4- P,,EA. So we have the algebra (Kl ,  K,, Jlz+cJO4+aP3, Po+ 
P4r PI, pz, SPO)(S = 0, 1). 

Let A. - A 4  = 0, po - p4 = 0,  A 3  = p 3  = 0. Obviously, 

[ X3, X I  I = K2 - CKI + A I P,A z PI - cAo( Po + ~ 4 )  

[ x3, Xzl = - K1- cK2 + P i  pz - pz pi - CPO( Po + P4) 

[X3,  X i  I + CXI - X2 = ( C A  I - - PI )Pi + (CA, + A I - P Z )  P2 - PO( Po + P4) 

[X3,  X2I + X I  + CX2 = ( A  I + CPI - P ~ ) P I  + ( A 2  + CPZ + pi)Pz + Ao(Po + P4). 
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If on the right-hand side of one of the last two equalities some coefficients of P1, P2 
are non-zero, so by lemmas 1 and 3 P I ,  P2, Po+ P4e A. Let CA, - A2-pl = 0, CA,+ A ,  - 
p2 = 0, A ,  + cp, - ps = 0, A,+ cp2+ p ,  = 0. The determinant formed by the coefficients of 
A I ,  h2,  pl, p2 is equal c2(4+c2) .  We obtain A,=A2=0,  p 1 = p 2 = 0 ,  Ao(Po+P4), po(Po+ 
P4) E A and therefore 

A = W + ( K , , K2, .I1 + cJ04 + UP,) w c v .  
Let n ( A )  = (Jlz, JI3, 3 2 3 , 3 0 4 ) .  Because of the simplicity of the algebra (Jlz, JI3, 323) 

one can assume that A contains the elements J12, .Il3, 3 2 3 ,  X = JO4+Z ylPl ( i  = 1,2,3) .  
Applying lemma 1 to [JI2, X I ,  [.I,,, X I ,  we conclude that Z ytP, E A, i.e. A is a splitting 
algebra. 

When the algebra n(A) coincides with one of the following algebras: ( K , ,  Jo4), 
( K , ,  K 2 ,  Jo4), (Kl ,  K 2 ,  K3, Jo4), one has to apply lemma 6. If n(A) contains J12+ cJo4, 
KO, where a E I c { 1,2,3}, then we apply lemma 7. Thus, this theorem is proved. 
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